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The conservation-law form of the inviscid gasdynamic equations has the remarkable 
property that the nonlinear flux vectors are homogeneous functions of degree one. Tnis 
property readily permits the splitting of flux vectors into subvectors by similarity transfor- 
mations so that each subvector has associated with it a specified eigenvaiue spectrum. As a 
consequence of flux vector splitting, new explicit and implicit dissipative finite-difference 
schemes are developed for first-order hyperbolic systems of equations. Appropriate one-sided 
spatial differences for each split flux vector are used throughout the computational field even 
if the flow is locally subsonic. The results of some preliminary numerical computations are 
inciuded. 

1. INTRODUCTION 

Finite-difference schemes for the conservation-law form of the unsteady inviscid 
gasdynamic equations are restricted to a very limited class of spatial difference 
approximations in subsonic flow regions. Only centered difference operators lead to 
difference methods that are simultaneously stable for both the positive and negative 
characteristic speeds (i.e., eigenvalues) that are associated with the spatial flux terms 
in subsonic flow. Use of any other class of spatial differential. operator requires 
splitting the flux terms into components of a restricted type. 

There are various reasons for using one-sided spatial difference operators. For 
example, for the model scalar wave equation, one-sided (or upwind) schemes 
frequently have superior dissipative and dispersive properties compared to those of a 
centered scheme [ 1,2]. An explicit second-order accurate upwind scheme can also 
have twice the stability bound of a centered second-order scheme [I]. A~otbe~ 
motivation stems from a desire to increase numerical efficiency of implicit 
algorithms. For example, an implicit upwind finite-difference algorithm can lead to a 

se lower triangular banded matrix that is more easily inverted th 
agonal and pentadiagonal matrices usually associated with centered schemes, 
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The notion of using explicit upwind difference schemes is, of course, not new. 
Courant, Isaacson, and Rees [3] proposed a method based on the normal or charac- 
teristic form of a quasi-linear first-order hyperbolic system. The spatial derivative in 
each equation of the characteristic form was approximated by either a first-order 
forward or backward difference quotient depending on the sign of the local charac- 
teristic speed. The method of Godunov [4], although not resembling a conventional 
finite-difference scheme, is equivalent to the method of Courant, Isaacson, and Rees 
for a linearized hyperbolic system (see Richtmyer and Morton [5, p. 3441). Anucina 
[6] and, in an independent paper, Gordon [7] recognized that one can construct 
difference methods based on the diagonal (normal) form without attempting to reduce 
the system to such a form. Anucina devised first-order one-sided schemes for linear 
symmetric hyperbolic systems (see also Yanenko [8, p. 5 11) and Gordon constructed 
a first-order upwind scheme for quasi-linear systems. 

Fromm [9, Eq. 141 constructed an explicit second-order upwind scheme for a 
scalar convection equation. The second-order upwind version of MacCormack’s 
method devised by Warming and Beam [ 1 ] is an extension of Fromm’s method to 
nonlinear hyperbolic systems where the local eigenvalues are of the same sign. van 
Leer [lo] has shown how to put any explicit upstream-centered scheme into 
conservation-law form. One of his examples is based on Fromm’s zero average phase- 
error method [9, Eq. 151 for a scalar convection equation. 

Our objective is to devise a means of splitting the flux vectors of a hyperbolic 
system in conservation-law form in order to extend the class of allowable spatial 
differencing schemes to achieve more robust algorithms and to improve 
computational efficiency for implicit methods. As in earlier related work [2, 111, we 
restrict our attention to the inviscid gasdynamic equations in conservation-law form 
and take advantage of the fact that the flux vectors are homogeneous of degree one. 
We have not investigated first-order conservative systems that are nonhomogeneous. 
The basic ideas used here, however, apply to first-order nonconservative hyperbolic 
systems of equations. Related explicit algorithms for the equations of gasdynamics 
written in nonconservation law form were recently proposed by Moretti [ 121, and 
Chakravarthy, Anderson, and Salas [ 131, while related algorithms in conservation- 
law form were developed by van Leer [lo] and Sells [ 141. 

In this paper we first review the restrictions placed on the spatial difference 
operators of hyperbolic systems that have both positive and negative eigenvalues. 
Using the one-dimensional inviscid equations of gasdynamics, we then develop a 
methodology for splitting the equations into components of the same characteristic 
behavior. Both explicit and implicit numerical algorithms are devised and tested for 
the split system of equations. The methodology and algorithms are then extended to 
multidimensions. 

2. MOTIVATION AND BACKGROUND 

In this section we review the restrictions placed on spatial difference approx- 
imations by the characteristic speeds (eigenvalues) of a hyperbolic system. 
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To illustrate the basic notions we consider a one-dimensional system of conser- 
vation laws 

g+$l, (2. i ) 

where U and F are m-component column vectors. The system (2.1) can be rewritten 
as a quasi-linear system 

(2.2) 

where A is the Jacobian matrix Z/au. The system (2.2) is hyperbolic at the point 
(x, t: U) if there exists a similarity transformation such that 

(2.3) 

where A is a diagonal matrix, the eigenvalues At of A are real. and the norms of Q 
and Q- 1 are uniformly bounded. 

For the purpose of a linear stability analysis, we assume that the coefficient matrix 
A is “frozen,” that is, constant. By virtue of Eq. (2.3), Eq. (2.2) can be transformed to 
the uncoupled system 

$+a$=o, l= 1, 2, 3,..., m. 

by defining a new vector u = (ul, u2, U, ,..., u,)~ = Q-‘U. Consequently, when 
analyzing the stability of numerical algorithms as applied to the linearized version of 
the system (2.2), we need only examine the scalar Eq. (2.4). For simplicity. the 
subscript 1 will be dropped in the remainder of this section. 

To analyze the effect of one-sided spatial differences on stability we leave the time 
variable continuous and discretize the spatial variable as x = .yj = jdx. Let 6ulZx be 
approximated by the first-order one-sided difference quotient 

au v 24. 
= -S-L + O(Ax), 

zj Ax 

where V, is the classical backward-difference operator 

(2.5) 

V$lj= Uj- Uj-1. (2.6) 
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This spatial discretization reduces Eq. (2.4) to a system of first-order ordinary 
differential equations: 

uj-"j-l =O 

Ax ’ (2.7) 

For simplicity, assume spatially periodic boundary conditions and look for a 
solution of the form 

UjQ) = v(t) eikjAx, P-8) 

where v(t) is the Fourier coefficient, i = fl, and k is the wave number. ‘By 
inserting Eq. (2.8) in Eq. (2.7), one finds that the Fourier coefficient satisfies the 
ordinary differential equation 

dv 
;ii-=av3 

a=--& [asin’ ($) +isinB], O=kAx. 

The solution is v = CeUf so for Eq. (2.9a) to have a bounded solution, the real part of 
a must satisfy Re a < 0, which requires that 1 > 0. 

Instead of the backward-difference operator (2.6), let au/ax be approximated by 

au 
s = 2 A,uj + I> 

J 

(2.10) 

where A, is the forward-difference operator 

Ax~j = Uj+ 1 - Uj. (2.11) 

If we repeat the Fourier stability analysis, we find 

a=-& [2sin’($)-isinB], O=kAx. (2.12) 

Again, for stability, Re a < 0, and we now require that h < 0. 
In summary, for one-sided spatial difference approximations we have the following 

result: If au/ax is approximated by the backward-difference operator (2.6), then the 
resulting ordinary differential equation (2.7) will be stable if and only if ;1 > 0 (i.e., 
the wave travels to the right). Conversely, if au/ax is approximated by the forward- 
difference operator (2.1 l), the resulting ordinary differential equation (2.7) will be 
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stable if and only if A < 0 (i.e., the wave travels to the left). In general, no conven- 
tional backward, forward, or unsymmetric operator such as 

au 
ax j= 

-2Uj_l-3Uj$6Uj+ii-Uj+z 
6Ax 

+ O(Ax3) (2.13j 

will yield an ordinary differential equation which is simultaneously stable fir bot 
positive and negative eigenvalues. Although this statement is justified in Appen 
its correctness is apparent from the fact that any noncentered spatial difference 
operator will yield an eigenvalue (see, e.g., Eq. (2.9b)) with a nonzero real part whose 
coefficient is the eigenvalue 1. Hence, the real part cannot satisfy Re 0 < 0 for both 
positive and negative 1. 

Returning to the system (2.1), it is clear that if a single noncentered difference 
operator is used to approximate aF/ax when the eigenvalues of the Jacobian matrix A 
are of mixed sign, then the resulting time-continuous method will always produce a 
numerical instability. 

3. ONE-DIMENSIONAL EQUATIONS OF GASDYNAMICS 

In one spatial dimension the inviscid equations of gasdynamics can be written in 
the conservation-law form (2.1) where 

(3.ia) 

(3.lb) 

and where m =pu. The primitive variables of (3.1) are the density p, the velocity ~1, 
and the pressure p. The total energy per unit volume, e, is related to the internal 
energy per unit mass, E, by 

e = PE + pu2/2 = pe + m2/(2p). (3.2: 

The system is completed with an equation of state 

P = P@TEl. (3.3) 

For the case of a perfect gas, 

(3.4) 
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which can be rewritten using (3.2) as 

P = (Y - l)[e - m2/(2p)ly 

where y is the ratio of specific heats. 
By using (3.5), the flux vector P(U) can be rewritten as 

F(U) = 

[ 

(y - 1)e + (Y- y)m2/(2p) . 
Y@dP - (Y - W3@P2) I 

(3.5) 

(3.6) 

The Jacobian matrix A = iYF/XJ is easily computed and found to be 

(y- 3qU2,2 (3 1 Y>U 
0 

A= y-l . 

I 
(3.7) 

(y- l)u”--eu/p ye/p-3(y- 1)u2/2 yu 

The eigenvalues of A are 

&=u, A, = u + c, 123=2.-c, (3.8) 

where c = (yp/~)“~ is the local speed of sound. For subsonic flow 1 U/ < c, and the 
eigenvalues are of mixed sign since u + c and u - c are of opposite sign. 

The inviscid equations of gasdynamics have the rather remarkable property that if 
the equation of state has the functional form 

P = Pf(Eh (3.9) 

then the nonlinear flux vector F(U) is a homogeneous function of degree one in U; 
that is F(aU) = aF(U) for any value a. The equation of state (3.4) is clearly a special 
case of (3.9) and the fact that F(U) is a homogeneous function of degree one is 
obvious by inspection of the flux vector (3.6). By application of Euler’s theorem on 
homogeneous functions (see, e.g., [ 151) there follows 

F=AU, (3.10) 

where A is the Jacobian matrix I~F/BU. One can readily verify the above equality by 
using Eqs. (3.7) and (3.la) and making the indicated matrix-vector multiply. The flux 
vectors in two and three spatial dimensions also have the homogeneous property. 

If F satisfies the homogeneous property and A has a complete set of linearly 
independent eigenvectors, then the flux vector F can be split into subvectors, each one 
of which is associated with a tailored set of eigenvalues. In particular, the eigenvalues 
associated with one subvector can be all positive, those associated with the other all 
negative. These subvectors can then be differenced individually with an appropriate 
one-sided scheme in conservation-law form. The details for the one-dimensional case 
are outlined in the following section. 
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4. FLUX VECTOR SPLITTING FOR THE ONE-DIMENSIONAL EQUATIONS OF 
GASDYNAMICS 

Consider Eq. (2.1) with U and F defined by Eq. (3.1). The flux vector F(U) has the 
homogeneous property defined in the preceding section and consequently F can be 
split into two parts as [2, 111 

F=F+ +8’-, (4.1) 

where Ff corresponds to the subvector associated with the positive eigenvalues of A. 
and F- corresponds to the negative eigenvalues. This splitting is derived as follows. 

y virtue of (3.10) and (2.3), 

F=AU= QAQ-“UT (4.2) 

where the diagonal elements of A are given by (3.8). 
Any eigenvalue A, can be expressed as 

n,=a: +a;, (4.3) 

where 

(4.4) 

so that if A, > 0, then A: = dI, A; = 0, with the converse result for A, < 0. 
Using the above formulas, we split the diagonal matrix 

A =A+ $A-, (3.5) 

where A + and A- have as diagonal elements I,: and ,I;, respectively. Equation (4.2) 
can be rewritten as 

F= Q(A+ +A-> Q-'U 
= (A+ +A-)U (4.6) 
=F+ +F-, 

where 

A+ = QA+Q-‘, A- = f&-Q-‘, 

F+ = A+U, F- =A-U, 

(4.7) 

(4.8) 

and 

A=A+ +A-. (4.9 j 
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The eigenvalues of A + are nonnegative and those of A- are nonpositive. For the 
inviscid gasdynamic equations, the matrices Q and Q-’ are given by 

Q=MT, Q-l = T-‘&f-‘, (4.10) 

where M and T and their inverses are given in [2] for one and two space dimensions 
and in [ 161 for three space dimensions (see also f17]). 

The eigenvalues given by Eqs. (3.8) are split according to Eqs. (4.3) and (4.4) into 

1-t = u + IUI 1 2 ’ 
a-= u--IuI 

1 2 ’ 

~+=u+c+l~+cl 2 

2 
’ a-=I(+C-lu+cl 

2 2 ’ 

~+=~--c+Id 3 2 ’ A-=u-c-lu-cl 3 2 * 

(4.11) 

The corresponding subvectors F+ and F- for the special case 0 < u < c are 

F+=!- 
2Y 

1 

’ 
(4.12a) 

I 

u-c 

F- =$ ( - )3 u c (;;$)( - ) cc* ’ 

2 + 2(YY 1) 1 
or, if u > c, 

F+ =F, F-=0, (4.12b) 

where F is (3.6). The subvectors (4.12a) can be obtained, by a tedious calculation, 
directly from (4.6) or from the generalized flux vector (4.19) given at the end of this 
section. 

The eigenvalue splitting (4.4) is not unique and other splittings into positive and 
negative parts are possible. For example, consider the splitting given by [ 1 l] 

a+= u+l”J 
1 

a-= u-lul 
2’ l 2’ 

Il:=A: i-C, a; =h- (4.13) 

a; = a:, a; =a:-‘-,, 

which satisfies (4.3) and the sum A: + A; = A, gives the physical eigenvalues. 
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A more general class of splitting is given by 

l,=np+nf+...) 

with corresponding subvectors 

F=FQ+FB+ ... , 

where 2, is not necessarily split into positive and negative parts. For example, the 
sound wave or pressure term contribution to the eigenvalue could be split from the 
flow velocity. In the general notation (4.15) with a = u and /I = c, one has 

n; = 2.4, /If = 0, 

A; = u, n; = c, 

nlj = u, n; = -c, 

and by the subvectors are given by 

This splitting, in two and three dimensions, has been used in pa~ab~~~z~ 
Navier-Stokes calculations [ 181. 

Since several splittings are possible, it is convenient to define a “generalized” flux 
vector from which any split subvector can readily be computed. The generai~zed fhtx 
vector is defined by 

;T;= Q/lQ-‘U, 

where A is the diagonal matrix 

whose eigenvalues x, are arbitrary. A direct calculation for the one-dirne~s~o~a~ 
gasdynamic equations yields 

“;=& 

i 

qy- 1)X, tR,+?x 
qy - 1) x,u +X,(24 + c) + A,(u - c) 

(Y--I)X,U*+~(u+C)2+~(u--C)2iW (4.19) 
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w = (3 - Y><J* + x3> c2 
2(Y- 1) * 

(4.20) 

The vector 5 has a rather striking structure. One can easily verify if the 2, are 
replaced by the physical eigenvalues (3.8), then (4.19) reduces to the physical flux 
vector (3.6) which, of course, must follow by Eq. (4.2). Flux formulas for any 
splitting follow directly by inserting the appropriate split eigenvalues (4.14) into 
Eq. (4.19). In particular, to arrive at the splitting defined by Eq. (4.1 l), F+ follows 
directly by inserting 1: into Eq. (4.19), and F- follows by inserting 1; into Eq. 
(4.19). The matrices A + and A - can be obtained from Eq. (4.7). The other splittings 
are obtained in a similar way. 

The generalized flux vectors *r, -rr for two and three spatial dimensions are 
given in Appendix B. From these generalized vectors, the flux vectors for any eigen- 
value splitting can easily be computed for the inviscid equations of gasdynamics. 

In concluding this section we remark that, in general, A + # aF+/aU and 
A- # cYF-/XJ. H owever, Jesperson [19] has shown that aF+/aU has positive eigen- 
values and 3F-/XJ has negative eigenvalues; these roots, however, are not identical 
to those of A’ and A- when the eigenvalues of A are of mixed sign. Jesperson used 
MACSYMA [20] to compute matrices similar to l?F+/aU and LV/BU and then 
located the eigenvalues by a Sturm sequence technique. In the case of convection- 
sound speed splitting (4.17), the eigenvalues of aF’/XJ are easily evaluated and are U, 
u, u and the eigenvalues of 8Fc/3U are 0, cd-, -cd-. Since, in 
general, the Jacobians of split flux vectors do not commute, one cannot expect 
additive eigenvalues. 

5. ALGORITHMS FOR ONE SPACE DIMENSION 

In this section we illustrate several numerical algorithms that can be constructed 
for the one-dimensional equations of gasdynamics by use of flux vector splitting. 

Explicit Methods 

The simplest explicit first-order upwind scheme based on flux vector splitting is 

K(.Fj’)” U!+‘= T-At Ax 
J 

_ At AX(FJT 
Ax ’ (5.1) 

where q denotes the finite-difference approximation to U, Fy = F(q), etc., and the 
forward- and backward-difference operators are defined by Eqs. (2.11) and (2.6). 
This scheme may be viewed as a conservative implementation of the Courant, 
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Isaacson, and Rees method [3]. According to linear stability theory the scheme is 
stable if and only if 

In:IAf/Ax< 1 (S.Z> 

for all eigenvalues A: where 1, = /I: + A; are the eigenvalues of the Jacobian matrix. 
To compare the first-order one-sided scheme (5.1) with centered ~rs~-order 

schemes, it is convenient to rewrite (5.1) in centered form. By virtue of Eqs. (4.41, 
(4.7), and (4.&), we can write 

where 

and 

A"=Q 

F+ = +(F + F), 

F- =$(F-0, 

F=A”U 

lJl/ 
1221 . . 

i-0 IL 

(5.3a) 

(5.4) 

is a matrix whose eigenvalues are the absolute values of the corresponding eigen- 
values of A. By inserting (5.3) in (5.1), one obtains 

where 

Hence the dissipative term or second-derivative term acts on the vector function F’ 
(cf. van Leer [IO, Sect. 21). 

We next consider the construction of second-order methods. MacCormack’s 
second-order scheme [21j for the one-dimensional system of conservation laws (2.1 j 
is 

us= V r;? 
q-At---x-s 

Ax ’ 
(5.7) 
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Since the predictor (5.7) is one-sided (upwind), the corrector (5.8) can be modified as 

(5.9) 

to obtain a completely upwind second-order scheme [l]. A necessary local condition 
for the stability of the scheme (5.7), (5.9) is that all the eigenvalues of the Jacobian 
matrix A be positive. 

MacCormack’s scheme can be modified by using a forward difference in the 
predictor, and a backward difference in the corrector. Likewise, the upwind scheme 
(5.7), (5.9) can be altered by replacing V by A and V* by -A*. In this case a 
necessary condition for the stability of the altered scheme is that all the eigenvalues 
of the Jacobian matrix be negative. 

The eigenvalue splitting (4.11) or (4.13) of the previous section can be used so that 
a split upwind version of MacCormack’s scheme can be used when the eigenvalues 
are of mixed sign, that is, in a subsonic region. The split upwind algorithm is 

(5.11) 

According to linear stability theory, the scheme (5.4), (5.5) is stable if and only if 

II,: ) At/Ax < 2. 

The MacCormack scheme (5.7), (5.8) is a symmetric scheme in the sense that the 
grid point cluster is symmetric about the center point j at the completion of the 
corrector step. A symmetric (explicit) second-order scheme has a predominantly 
lagging phase error and an upwind scheme has a leading phase error [l]. The 
opposite phase error of the symmetric and the upwind schemes suggests that a 
considerable reduction of phase error would occur if the two schemes were alternated 
on successive time steps. A temporal switching of schemes is the basis of Fromm’s 
method of zero-average phase error [22]. 

Implicit Methods 

A. noniterative implicit finite-difference scheme, for a one-dimensional system of 
conservation laws is [2] 

6,AJ AUj’=- l+r x I dtaF!+ ’ 
l+r Awy 

(5.12) 
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where I is the identity matrix, AU” = U”’ ’ - U”, A is the Jacobian matrix, and ?iV is 
an appropriate spatial difference operator. ’ In general, the spatial derivative approx- 
imations on the left- and right-hand sides of (5.12) can be different. The parameters 6. 
< determine the particular time-differencing approximation used. Scheme (5.12) 
includes three well-known implicit formulas 

e=t, t=o trapezoidal formula; 

8= 1, tj=o backward Euler; 

e= 1, r=f three-point backward. 

For a more general formulation that includes all linear multistep (time-differencing) 
methods see (23 I. 

With use of the split flux vectors (4.7), one-sided spatial difference approximations 
are possible. For example, 

where 

abF,= 3Fj-4Fi-1 fFjmz 
x .I 2Ax 

and 

6jrFj= 
- 3Fj f 4Fj- 1 - Fj . z 

2Ax 

(5.14) 

(5.15) 

are second-order accurate one-sided difference operators. 
The splitting F = Ft + F- allows an approximate factorization of the left-hand 

side of (5.7) into the produce of two operators as 

(5.16) 

’ In Eq. (5.12) and in similar equations throughout this paper, notation of the form (I -- dr 6,4 j ‘1~ 
denotes ACi J- dr ??,(A AC’). 
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This scheme is implemented by the sequence 

r 
+ 1+g 

-Ad-‘, 

I+ BAt A,Aj In 

l+t Ax 
AU;=A$ (5.17b) 

q+l=q+Aq. (5.17c) 

Note that since A + . A - = 0, a linearized (i.e., constant coefiticient) analysis of (5.16) 
would indicate that no error was introduced by the factorization of the left-hand side 
of (5.13) into the product on the left-hand side of (5.16). 

Unlike Eq. (5.13), the solution of Eq. (5.16) does not require the solution of a 
block triduagonal system because both Eqs. (5.17a) and (5.17b) lead to block 
bidiagonal systems. For example, by writing out (5.17b), 

we see that the solution is achieved by a right to left sweep (decreasing j) with the 
inversion of the 3 x 3 matrix in the parenthesis on the left required at each mesh 
point. The eigenvalues of this matrix are greater than or equal to unity and conse- 
quently the matrix is nonsingular for any At. 

The scheme (5.16) is second-order accurate, dissipative, and unconditionally stable 
for 19 = 1, < = f (according to linear theory). In one spatial dimension, computational 
efficiency can be lost in comparison to Eq. (5.12) with S, a three-point central 
operator. This is chiefly because At, A-, F+, and F- are costly to form. In 
multidimensions, however, an advantage is achieved by avoiding the solution of block 
tridiagonal systems. 

6. NUMERICAL EXPERIMENTS IN ONE DIMENSION 

The numerical solution of a one-dimensional shock-tube flow was chosen to judge 
the viability of the numerical algorithms given in the previous section. As a model 
problem, consider a tube of large extent in which a diaphragm separates a perfect gas 
at rest with different static pressures but at a uniform temperature. With rupture of 
the diaphragm, an expansion propagates into the high-pressure gas, while a shock 
wave, followed by a contact discontinuity, propagates into the low-pressure gas. 
Details of this flow are described in standard texts (e.g., Liepmann and Roshko [24]). 
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In our calculations, the initial pressure ratio across the diaphragm is taken as IO to 
1. The solution results for various methods are shown in Figs. 1-6 in terms of the 
nondimensional density, p/p,,, where p. is the initial high-density gas. In all cases, t 
same spatial grid and time step are used and At/Ax = 0.4 and CFL number N 0.95. 

The numerical solution using the first-order explicit upwind scheme (5.1) is shown 

in Fig. 1. Also plotted is the exact solution shown by a continuous line. The i~~t~~~ 
location of the diaphragm is taken at x = 1.95. The sohttion is monotone as one 
might expect. The result for the second-order explicit upwind scheme (5. IO), (5.11) is 
shown in Fig. 2. Overall, the numerical accuracy is good and although the contact 
discontinuity is smeared out, the overshoots are moderate. For comparison purposes, 
the results for this flow obtained using the conventional MacCormack scheme 
(forward spatial difference on predictor and backward difference on corrector) are 
shown in Fig. 3. The accuracy of the two schemes is comparable, with the ex~e~t~o~ 
of a large spike in density as a result of start up. MacCormack has shown that the 
addition of a dissipation term, especially in expansion regions, can control such 

.a SOLUTION AT TIME = 1 
INITIAL PRESSURE RATIO = IQ 

NUMERICAL 
.6 

PIP0 
- EXACT 

.4 

I 
0 

1 2 3 4 4.5 
x 

FIG. 1. Shock-tube solution obtained using first-order explicit upwind scheme. 

1.0 

.a 

.6 

PIP0 

.4 

SOLUTION AT TIME = 1 
INITIAL PRESSURE RATIO = ‘?O 

NUMERICAL 

--EXACT 

FIG. 2. Shock-tube solution obtained using second-order explicit upwind scheme. 

581/40/Z2 



278 STEGER AND WARMING 

spikes [25]. We did not program this version, however, in order to illustrate the effec- 
tiveness of alternating the centered and upwind schemes. 

In Fig. 4 we show the solution obtained using the upwind scheme (5.10), (5.11) to 
advance the solution for odd values of the time index rz and using the MacCormack 
scheme (5.7), (5.8) for the even values of rz. The results of this combined algorithm 
are clearly superior to the application of either of its constituents. The overshoots are 
much reduced, and the jumps are crisper. 

Results for the implicit upwind scheme (5.17) are shown in Fig. 5. Here, three- 
point backward time-differencing was used (r9= 1, c= 4). Again the results are good 
and quite comparable to those obtained with the explicit upwind method except 
across the shock where the profile is more smeared for the implicit method. Finally, 
in Fig. 6 we show the results obtained from the “conventional” implicit algorithm 
using centered differencing and three-point backward time-differencing. A small 
amount of fourth-order numerical dissipation was added [26]. 
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FIG. 3. Shock-tube solution obtained with explicit MacCormack scheme. 
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FIG. 4. Shock-tube solution obtained by alternating explicit upwind and MacCormack schemes. 
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FIG. 5. Shock-tube solution obtained from implicit upwind scheme 
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FIG. 6. Shock-tube solution obtained using implicit algorithm with central spatial differencing, 

7. FLUX VECTOR SPLITTING IN Two SPACE DIMENSIONS 

In two spatial dimensions, a hyperbolic system of conservation laws has the form 

au c?F ac2 
at+-&+-=05 

dy 

where for the inviscid gasdynamics equations 

(,7.1) 
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where m =pu and n = pv. The primitive variables of (7.2) are density p, velocity 
components u and u, pressure p, and total energy per unit volume e. The equation of 
state is 

This system can be written in quasi-linear form as 

where A and B are the Jacobian matrices 

(7.3) 

(7.4) 

(7.5b) 

As in the previous section, we use the fact that F(U) and G(U) are homogeneous 
functions of degree one in U and consequently 

F=AU, (7.6a) 

G=BU. (7.6b) 

For the inviscid equations of gasdynamics, the matrices A and B can be 
diagonalized as 

Q-‘AC?= [: ’ u+c .‘.1 (k,=l,k,=o), (7.7) 

Q-‘&i?= [ 1 ’ u+c .;,1 (k,=O,k,=l), (7.8) 

where c is the local speed of sound. The matrices Q and Q-‘, as defined in 
Appendix B, are functions of the two parameters k, and k, and of the dependent 
variables. The values of (k,, k,) indicated in the parentheses of (7.7) and (7.8) are the 
values that diagonalize A and B. Since A and B do not commute, they cannot be 
diagonalized by the same similarity transformation. 
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The flux vectors F(U) and G(U) for the inviscid equations of gasdynamics can be 
split into subvectors, each of which depends on eigenvalues of the same sign exactly 
as in the one-dimensional case. A generalized flux vector 

T1= QAQ-‘U, (7.9) 

analogous to (4.19) for one space dimension, is given in Appendix B for two space 
dimensions. (For completeness, a three-dimensional version is also given.) By using 
the generalized flux vector, one can compute F *, G* for any desired eigenvaiue 
sphtting. For example, 

F+ =sz;,(k,= l,k,=O,A:,A:,;I;), (7. !@) 

where fir as given by Eq. (B9) of Appendix B is evaluated using the particular 
values of the parameters (k,, k,) and (2,) x,, 2,) indicated in the parentheses of 
Eq. (7.10). The positive eigenvalues ,I:, ,I:, ,I: are defined by Eq. (4.4), where 
?,, = u, d, = u -t c, and 1, = u - c. 

8. ALGORITHMS FOR Two SPACE DIMENSIONS 

Just as in the one-dimensional case, the split subvector forms allow construction of 
novel numerical difference schemes. 

&plicit Methods 

The natural extension of the upwind scheme (5.7), (5.9) to two spatiai dimensions 
is 

U;,:’ = U$ - v,[A,(F;$ + VX(F;$] - ~&t,,(Gj;~)~ -?- Vy(GQ j. (8.1) 

q,,: ’ = 4 { l?$’ + U& - v,[A,(F/T~)= + VX(FLk)” - ’ ] 

- v, PyGJ 
n+l + Vy<Gjld”+‘l - ~xIV:(l;jtJ - A:(F,:d”l 

- vyP;(GjtZ - &%>“I 1, (8.2) 

where x =jdx, y = k dy, and v, = At/Ax. v, = At/Aye Although this upwind version 
of MacCormack’s scheme requires considerably more work than the conventional 
scheme, it is a more robust algorithm if the solution exhibits large spatial gradients. 
In addition, as in the one-dimensional case, a very effective algorithm is obtained 
when the upwind scheme is alternated with the conventional MacCormack scheme on 
successive time steps. 

If only first-order time accuracy is required, a simple explicit scheme is given by 

U;,:’ = Uj’k - At(@+ + &F- + 6;G+ + 6$G.-) jT,k, (8.3) 

where ab and IY are defined by (5.14) and (5.15). Such a scheme is practical for 
steady-state problems and it could be the basis of a point relaxation algorithm. 
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Implicit Methods 

The natural extension of (5.13) to two spatial dimensions is 

The left-hand side of the scheme (8.4) can be factored into the product of two 
operators as 

V$jfk I” 
AY 

‘XA.,;k In 
Ax 

+ AyBjTk I” 
AY )I 

AU;,, = RHS(8.4), 

where 

and RHS (8.4) denotes the right-hand side of (8.4). This scheme can be implemented 
by the sequence 

)I Aqk = RHS (8.4), 

4% In + A,B.,G In 
Ax Au )I AU!., = AUTk, 

(8.6a) 

(8.6b) 

q,:‘= U;,,+AQ. (8.6c) 

Compared to the class of centrally differenced implicit schemes [2, 27, 28) the 
algorithm (8.6) has both advantages and disadvantages. Equation (8.6a) requires the 
solution of a sparse block lower triangular matrix and Eq. (8.6b) requires the solution 
of a sparse block upper triangular matrix, Consequently, the computational inversion 
work is much less than that of solving two block tridiagonal matrix sequences, as a 
conventional central differenced algorithm would require. Moreover, in three 
dimensions the plus-minus split subvectors can still be approximately factored into 
just two factors-a sparse upper block-triangular matrix and a sparse lower block- 
triangular matrix. In three dimensions, the use of central spatial differences requires 
the inversion of three block tridiagonal sequences. The upwind differences are also 
dissipative, so it is not necessary to add higher-order dissipation terms. 

On the other hand, twice as many Jacobian matrices and flux vectors have to be 
formed with the plus-minus splitting. Furthermore, these are more involved to form 
than the usual Jacobians, although with careful programming certain terms in A * and 
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B* as well as Pi and G* can be formed simultaneously. If one is willing to accept 
first-order time accuracy or is interested in only steady-state problems, then the 
computation can be greatly simplified by replacing A *, * by the identity matrix 
times the appropriate spectral radius; for example, A* is eplaced by imax, id: j 1. 

imilar idea appears in a paper by Jameson and Turkel [29].) 
ther difference schemes can be formulated that use the plus-minus Rux vector 

splitting. An implicit second-order accurate scheme is given by 

This factorization does require a block-tridiagonal inversion in the y-direction. Conse- 
quently, viscous terms in the y-direction can readily be included into the imphcit 
operator. 

A semi-implicit, first-order accurate scheme in time is obtained from Eq. (8.7) by 
dropping the factor (I + h AxA,, /“/Ax) and letting B = 1, < = 0. Indeed, once the 
vectors are broken into subvectors, a large number of difference schemes can be 
devised to achieve possible advantages in numerical accuracy, robust 
computational efficiency, and storage. 

9. NUMERICAL EXPERIMENTS IN Two DIMENSIONS 

Numerical calculations of model problems in two dimensions have been used to 
verify the stability and practicality of the algorithms of the last section. For example, 
the explicit algorithm (8.1) was tested on a square uniform grid with periodic 
boundary conditions. Waves were followed in time for arbitrary (nonphysical) initial 
data. Although no results are shown, it was noted that the upwind scheme required 
about three times more computational time than the standard MacCormack scheme 

The implicit algorithm (8.5) was tested on a simple biconvex airfoil with linearized 
boundary conditions. A typical transonic airfoil solution resuh is shown in Fig. 7 for 
a free-stream Mach number of 0.84 and a body thickness ratio of 11.4. The eigen- 
value splitting (4.4) was used. Also shown are the calculated results obtained from 
the conventional implicit algorithm using central differencing. Both calculations use 
the same grid and boundary conditions. The grid is clustered in x and y and uses 
50 x 28 points. The results shown are in good agreement for this coarse grid. 

The numerical calculations illustrated two weaknesses of the upwind scheme that 
have now been essentially corrected. Whenever an eigenvalue changes sign, it is either 
suddenly set to zero or is suddenly nonzero. Elements of any subvector are suddenly 
changed and the local accuracy of the difference approximation can suffer. In Fig. 6 
one notices a small oscillation in the data at the sonic line where the (u - c) eigen- 
vahte changes sign. This oscillation would actually appear much worse if it were not 
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FIG. 7. Steady state solution for 11.4% thick parabolic arc airfoil, M, = 0.84. 

for the blending terms that are added to the eigenvalues to smooth out sudden 
changes. An example of blended terms are the following: 

A+= u+lul 
1 2 + El, 

~+=U+C+IU+CI 
3 f&3, 2 I-=~+c-Iu+cI 3 2 -63, 

I+=“-c+Iu-cl+, 
4 2 42 

A- =u-c+-cJ 
4 2 -64, 

where E[ are small positive numbers which smoothly approach aero as 11,J increases. 
We remark that nonconservative formulations are not afflicted with flux vectors that 
have discontinuous derivatives. 

As previously noted, A+ # aF+/XJ, although the two matrices share eigenvalues of 
the same sign, For the shock-tube calculations the time step was limited by accuracy 
considerations and no difficulty was encountered in using A+ and A- on the left-hand 
side of the implicit algorithm. In the steady-state airfoil calculation we did find that 
using A * instead of l?F*/aU imposed explicit-like time-step restrictions. Use of the 
true Jacobian resulted in a more robust algorithm. This is quite a different result than 
was found with convection-sound speed splittings [ 111 in which the similarity matrix 
had equivalent stability properties to the actual Jacobian. 
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10. GENERAL CONSERVATION FORMS FOR HYPERBOLIC SYSTEMS 

The implicit algorithms developed in the previous sections were for a Cartesian 
coordinate system; however, computational fluid dynamical problems involve flows 
over (or through) arbitrarily shaped bodies. 

In this section we show that the previously derived algorithms can be made 
applicable to general flow fields. One method of handling complex geometries is to 
map the physical plane-for example, an airfoil in two spatial dimensions-into a 
rectangular computational plane. The desired transformation has the property that the 
airfoil surface is coincident with coordinate lines in the physical plane, and the airfoi! 
surface lies along the boundary of the rectangular computational plane. The 
transform should also cluster grid points to regions where large spatial gradients 
occur. Since the actual numerical computation is carried out in a transformed 
rectangular plane with a uniform mesh we review in this section the form of the 
transformed conservation-law equations and the corresponding difference algorithm. 

It can be shown [ 301 that the conservation-law form (7.1) is retained under an 
arbitrary time-dependent coordinate transformation 

5 = 5(x, Y, 03 II = 17(x, Y, fh 7: = t. (10.1) 

In particular, one obtains 

(10.2) 

where 0 = U/J and the flux vectors f and G are linear combinations of the vectors of 
(7.2): 

f = (t, U + t;,F + Cs G)/J, (10.3a) 

e = (rlt U + rl,F + vs G)/J, (10.3b) 

and 

is the Jacobian of the transformation. It is important to note that Cartesian 
components of velocity and momentum are retained in (10.2). The equations in three 
spatial dimensions are straightforward generalizations of the above equations. 

As in the previous sections, we use the fact that F(U) and G(U) are homogeneous 
functions of degree one in U. As a consequence 

F(U) - = F( U/J) = F( l?) = A 0, 
J 

y = G(U/J) = G(o) = Bl?, 
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where 

(Note that A and B are the Jacobians for Cartesian coordinates defined by Eq. (7.9.) 
Hence, Eqs. (10.3) can be rewritten as 

p= @,,I + k,,A + k,2B)o, 

e = (k,J + k,,A + k,,B)o, 
(10.6) 

where k,, = &, etc., are the scale factors. The generalized flux vector Yn defined in 
Appendix B can be used to calculate P *, G* for any arbitrary eigenvalue splitting. 
This is apparent from Eqs. (B7), (B6), and (Bl) of Appendix B because the coef- 
ficients k, and k, of Eq. (Bl) are arbitrary real numbers, which for the present 
application are taken to be the scale factors &, &, 6, etc. Finally, since the 
conservation-law form is retained by (10.2), the numerical algorithms of Section 7 are 
directly applicable to general conservation forms. 

11. CONCLUDING REMARKS 

A hyperbolic system of conservation laws whose associated Jacobian matrices 
have positive and negative eigenvalues can only be spatially differenced as a system 
with centered operators. However, splitting the flux vectors into subvectors whose 
associated eigenvalues are of the same sign allows use of one-sided (upwind) 
operators. 

In this paper, we have made use of the fact that flux vectors of the inviscid 
gasdynamic equations are homogeneous functions of degree one to construct flux 
vector splittings. As a consequence, new explicit and implicit dissipative difference 
methods are devised which are more robust and computationlly efficient than conven- 
tional spatially centered schemes. Preliminary computational experiments show that 
the new methods are feasible, although clearly both additional analysis and numerical 
testing on “realistic” problems are required. 

APPENDIX A: INSTABILITY OF ONE-SIDED SCHEMES FOR HYPERBOLIC 
SYSTEMS WITH EIGENVALUES OF MIXED SIGN 

Here we examine the hyperbolic system of equations 
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where A is a constant matrix with both positive and negative eigenvalues. In Section 2 
it was shown that approximating 8, U with either V, U or A, U must always lead to 
instability for the time-continuous system of equations. In this Appendix, we argue 
that all conventional backward, forward, or biased (e.g., Eq. (2.13)) finite-difference 
approximations to Z,U will be unstable if A has both positive and negative eigen- 
values. 

As shown in Section 2, Eq. (Al) can be transformed into an uncoupled system of 
scalar wave equations of the form 

n 

~+,$I, 
,  

(A2) 

where 1 is either positive or negative. With introduction of a spatial difference 
approximation. Eq, (A2) is replaced by a system of ordinary differential equation 

du 
- = Mu + f. 
dt 

(A3) 

where u = (u,. u?. u3 . . . . . uj ,... )‘, uj = u(jdx), f contains known boundary data (if 
any), and M is a constant coefficient matrix. For example, if a, is approximated by 
k + with given boundary data on the left-hand boundary, then 

M=-& 

4l 
0 
0 

II f=& O . i-44: 

If C.I is approximated by Eq. (2.13), then 

In this latter example the values of M would change to accommodate an alternate 
choice of differencing at the right-hand boundary. 

The solution of Eq. (A3) is (cf. (3 1, 32 J) 

u = f?‘uO + particular solution. 
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If M has an eigenvalue with a positive real part, then eMf -+ 00 as t -+ co and the 
solution is unbounded. However, any conventional backward-, forward-, or biased- 
differenced scheme leads to a matrix M with a nonzero real trace. The trace contains 
II as a multiplier and the sum of the eigenvalues of M equals its trace. Consequently, 
for either the case J. positive or 1 negative, d’ + co as t t co since at least one eigen- 
value will have a positive real part. Thus, conventional backward-, forward-, or 
biased-difference schemes are unstable. 

The above argument, showing instability, is not altered by boundary conditions 
since they will only affect a few end-point elements of the matrix M. For a large 
matrix (refined spatial grid), these few elements cannot alter the sign of the trace. 
Note that the use of central spatial differencing, which can be stable, leads to a 
matrix M with zero trace. We remark also that a nonconventional upwind 
differencing such as 

au uj-l - uj-2 

zjy Ax 

also has a zero trace and thus must be proved to be unstable by another argument. 

APPENDIX B: GENERALIZED FLUX VECTOR FOR Two AND THREE 
SPATIAL DIMENSIONS 

Two-Dimensional Case 

The system of conservation laws (7.1) can be rewritten in quasi-linear form 
Define a matrix P as 

(7.4). 

. P = k,A + k,B, Pl) 

where k, and k, are arbitrary real numbers. The system (7.4) is hyperbolic at the 
point (x, y, t, U) if there exists a similarity transformation such that 

Q-lpQ= =A, (B2) 

where the eigenvalues ar are real and the norms of Q and Q-l are uniformly bounded. 
The formulas in the remainder of this Appendix pertain to the inviscid equations of 
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gasdynamics for a perfect gas. The Jacobians A and B are 4 x 4 matrices and Q and 
Q-’ can be written as 

Q=MT, Q-l = T-‘M-1, (331 

where M. T, and their inverses are given in the Appendix of 12 1. In general, the 
elements of Q and Q- ’ are functions of the parameters (k, , k,) and the dependent 
variables. For example, the elements (Q),3 and (Q- ‘)3J are 

(Q-%3 =-!-- @p IJ! - (Y - 1 )ul, 

where u and c are the x- and y-velocity components, p is the density, c is the local 
speed of sound, 7 is the ratio of specific heats, and 

El = k,/(k; + k;)l12, r;, = k,/(k; + k;)“2. (B4) 

The eigenvalues i., of P are 

A, = A2 = k,u + kp, ;c3 = A1 +- c(k; + k;)“2, 

2, = A, - c(kf + kf)‘;*, 
035) 

Formula (B2) can be written as 

P = k,A + k,B = QAQ- I. 36) 

Hence. the matrix A or B, or any linear combination, can be recovered from (B6). 
As in the one-dimensional case (see Section 4), it is convenient to define 2 

generalized flux vector by 

c-6, = Q/iQ-‘U: (B7) 

where now the eigenvalues x, of the diagonal matrix /1  ̂are taken to be arbitrary. 
Although the matrix Q-’ is rather complex, the product Q-- ‘U is simply 

-. 

(BfU 
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Completing the computation for the generalized flux vector we obtain 

2(y- 1)X, +x,+x, 
_-_-_-_-------------------------- 

2(y - 1) x,u + X,(U + cf2;) + X,(U - cf;,) 
_-_---_-_------------------------ 

j4& 2(y - 1) xiv t &(2’ + c/Q + X,(V - c/Y*) 

3 _-_-_-___-_-_-_-_-_-------------- 

(y - l)~,(uZ + v2) + $f [(u t c/F,)' + (v t c!Q2] 

+ 2 [(u - clq2 t (v - ck;)7 + w,, 

where 

w  
II 

= (3 - ?a + L) c2 
2(Y - 1) 

and k”, and E2 are defined by Eq. (B4). The conventional flux vector P(U) is obtained 
from (B9) if k, = 1, k, = 0, and the &‘s as given by (B5) are inserted in (B9). 
Likewise, G(U) is recovered if k, = 0, k, = 1. Formula (B9) can be used to obtain 
any flux vector splitting as described in Sections 7 and 10. 

Three-Dimensional Case 

In three spatial dimensions, a hyperbolic system of conservation laws has the form 

This system can be rewritten in quasi-linear form as 

where A, B, C, are the Jacobian matrices 

&E C!?G 8H 
au B=z, Gau. @3W 

The generalization of (Bl) is 

P=k,Atk,B+k,C. (B13) 

The eigenvalues of P are 

.d,=~,=il,=k,u+k,vtk,w, 

d, = 1, + c(k . k)“*, L, = 1, - c(k . k)V2, 
Pl4) 
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k.k=k;+k;+k:. 
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The matrices M, T, and their inverses, which are needed to compute Q and Q-’ as 
defined by Eq. (B3), are given in [16]. The generalized flux vector for three space 
dimensions is defined by 

&’ = QAQ-‘U, (BlSj 

where the eigenvalues 1, of the 5 x 5 diagonal matrix ii are again arbitrary. For the 
purpose of calculating Xnl, we assume that 2, = 2, = 1, because this is the case for 
the physical eigenvalues of the matrix P defined by Eq. (B14) and for the eigenvalue 
splittings of interest. The product Q- ‘U is 

and the generalized flux vector is 

where 

0316) 

2(y- 1)X,+X,+X, 
_--_-__-_--__-_--_-_~-~~-~---------~-~ 

2(y - 1) X,U + X,(U + CEJ + X,(U - cf;,) 
---_----_--_--------~--~-~--~---~----- 

2(y - 1) x, 21 + X,(V + c/q + X,(V - A*) 
_-__-_-----_--_-_-_~_I________________ 

2(y - 1) x, W + ;z,(W -I- c‘&) + x&J - c&) 
__---_-----_--_-_--~~~~~~~-~-~-~------ 

0 - 1) Lb’ + v2 + w’) + $ [(u t CE’)’ + (v + cE2)’ t (w + &J] 

t 2 [(u -UT')* t (v - clc2)z t (w - c&)2] + w,,, t P 

w,,, = (3 - Y>@d f L) 2 
%- 1) ’ 

P = 2p(y - 1) X,EI(E2W - t;;v), 
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u, v, and w  are the x-, y-, and z-velocity components, and 

l, = k,/(k: + k; + kf)“*, E2 = k&k: -t k; + k:)“*, 

& = k&k: + k; + k;)“*. 
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